
Warsaw University of
Technology

Faculty of Mathematics
and Information Science

Master thesis
Computer science

Applications of memory management
optimization techniques in script

languages interpreters
Zastosowanie optymalizacji pamięci

w interpreterach języków skryptowych

Author:
Julian Zubek

Supervisor:
Krzysztof Kaczmarski Ph.D.

Warsaw, September 2012

Supervisor’s signature Author’s signature

Abstract

The goal of this work was to analyse and compare the strategies
of automatic memory management used in the interpreters of popular
script languages. The methods for optimisation of memory management
were also searched for. Three popular script languages were analysed:
Perl, Python and Ruby. The main memory management mechanisms
used in the official implementations of these lanaguages were identified.
In the case of Perl this was reference counting, in the case of Ruby this
was the mark-and-sweep garbage collector, and in the case of Python the
hybrid approach mixing both of these techniques were used.

The next step was to find what fraction of the script’s execution time
is spent on memory management. Experiments showed that for all three
languages and simple test programs the value was between 20% and 50%.
This much time spent on garbage collection is the result of treating all
kinds of values—even simple numerics—as objects. The results justify
the need for solutions that would optimise existing memory management
mechanisms.

A short survey of memory optimisations proposed in the literature was
carried out. I have searched for mechanisms supplementary to standard
memory management techniques. I have paid special attention to the
concept of stack allocation, which allows to free all allocated objects at
once when the function exits. Another concept that was described more
broadly was compile time garbage collection.

Selected mechanisms were implemented as extensions of Skarb—an
experimental Ruby to C compiler developed by the author of this thesis
as a part of bachelor thesis. The goal of the bachelor thesis was to
provide basic compiler functionality. In this thesis mechanisms for stack
allocation and memory reuse as well as a fairly sophisticated static code
analysis mechanism based on a connection graph were introduced.

The connection graph provides information about relations between
objects and references. It allows to perform reachability analysis and
identify function local objects. It also makes simple object liveness
analysis possible. Connection graph proved to be a convenient and
universal form of code abstraction, suitable for implementing selected
optimizations.

The results obtained from the experimental tests showed that in
the case of some recursive functions even 60% of the objects created
during program execution can be stack-allocated. The performance gain
introduced by stack allocation in such cases reached 40%. The mechanism
of local object reuse allowed to achieve 15% speedups in tests containing
operations on long arrays executed in a loop.

Streszczenie

Celem pracy była analiza i porównanie metod automatycznego zarzą-
dzania pamięcią stosowanych w interpreterach języków skryptowych oraz
poszukiwanie możliwości ich optymalizacji. Analizie zostały poddane
trzy popularne języki obiektowe: Perl, Python oraz Ruby. Zidentyfiko-
wano główne mechanizmy zarządzania pamięcią stosowane w oficjalnych
implementacjach tych języków. W przypadku Perla było to zliczanie
referencji, w przypadku Ruby’ego garbage collector typu mark and sweep,
w przypadku Pythona rozwiązanie hybrydowe wykorzystujące oba te
mechanizmy.

Kolejnym krokiem było zbadanie jak duża część czasu wykonania
programu napisanego w danym języku jest poświęcana na zarządzanie
pamięcią. Eksperymenty wykazały, że dla wszystkich trzech języków
i prostych programów testowych wartość ta mieści się w przedziale 20%
do 50%. Tak duże wielkości wynikają z konsekwentnego traktowania w ba-
danych językach wszystkich wartości – nawet prostych typów liczbowych
– jako pełnoprawnych obiektów. Wyniki te uzasadniają potrzebę poszu-
kiwania rozwiązań przyśpieszających obecne mechanizmy zarządzania
pamięcią.

Dokonano przeglądu literatury pod kątem rozwiązań wspomagających
tradycyjne techniki zarządzania pamięcią. Szczególną uwagę poświęcono
koncepcji alokacji na stosie, która pozwala na błyskawiczne zwolnienie
zaalokowanych obiektów przy powrocie z funkcji. Przyjrzano się też
z zainteresowaniem opisywanym rozwiązaniom statycznego odśmiecania
pamięci podczas kompilacji (compile time garbage collection).

Wybrane mechanizmy zaimplementowano jako rozszerzenia ekspery-
mentalnego kompilatora Ruby’ego Skarb, tworzonego przez autora tej
pracy w ramach pracy inżynierskiej. Celem pracy inżynierskiej było
zapewnienie podstawowej funkcjonalności kompilatora, natomiast w ra-
mach tej pracy dodana została możliwość alokacji obiektów na stosie,
wielokrotnego wykorzystywania raz zaalokowanej pamięci oraz zaawan-
sowany mechanizm statycznej analizy kodu oparty na grafie połączeń
(connection graph).

Graf połączeń zawiera informacje o relacjach pomiędzy występują-
cymi w programie obiektami a referencjami. Pozwala on na przeprowa-
dzenia analizy dostępności obiektów w konkretnych funkcjach programu
i identyfikacje obiektów lokalnych względem funkcji, oraz na prostą ana-
lizę czasu życia obiektów. Graf połączeń okazał się bardzo wygodną
i uniwersalną formą abstrakcji kodu, pozwalającą na zrealizowanie zało-
żonych optymalizacji.

Testy wykazały, że w przypadku niektórych funkcji rekurencyjnych po-
nad 60% wszystkich obiektów tworzonych podczas wykonania programu
może być zaalokowanych na stosie. Uzyskane dzięki temu przyśpieszenie
czasu wykonania programu sięga 40%. Mechanizm statycznego odzyski-
wania pamięci pozwolił na uzyskanie przyśpieszenia rzędu 15% w testach
zawierających operacje na długich tablicach wykonywane w pętli.

Contents

Contents v

Introduction vi

1 Script languages and memory management 1
1.1 Script languages . 1
1.2 Memory management . 5
1.3 Cost of memory management 11

2 Memory management optimisations 15
2.1 Stack allocation . 16
2.2 Compile time garbage collection 17

3 Optimisations implemented in the Skarb compiler 19
3.1 Connection graph abstraction 19
3.2 Stack allocation . 30
3.3 Local objects reuse . 31

4 Tests results 35

5 Conclusions 40

Bibliography 42

v

Introduction

Script languages such as Perl, Python and Ruby have gained popularity among
programmers. They are no longer regarded as toy languages and it is becoming
more and more common to use them to develop complex applications. This
trend puts a demand on fast and optimised interpreters and compilers. In my
bachelor thesis [30], written together with Jan Stępień, I proposed a way to
meet this demand by translating the Ruby source code to the C source code
and then bt using one of the optimised C compilers. This approach resulted in
serious speedups in comparison with the original Ruby implementation, but
the performance gain was often limited by the performance of the garbage
collector. This observation led me to studies of memory management techniques
in the context of script languages. In this work I analyse techniques used in
the interpreters of popular languages and propose methods of optimisation.
Selected optimisations were implemented and tested experimentally.

The rest of this thesis is structured as follows: Chapter 1 shortly charac-
terises the languages which are being taken into account and describes the
memory management strategies used in their interpreters. It also presents some
of the results of experimental studies showing how a large portion of program’s
execution time is spent on garbage collection. In Chapter 2 various ways of
optimising memory management are mentioned. Two techniques, i.e., stack
allocation and compile time garbage collection, are more fully described. Chap-
ter 3 contains the details of implementation of those techniques and describes
the connection graph—a form of code abstraction used for necessary analyses.
Chapter 4 presents the obtained experimental results and Chapter 5 is a short
conclusion of the thesis.

vi

Chapter 1

Script languages and memory
management

1.1 Script languages

Script language (or scripting language) is a term which is commonly used
by programmers but lacks a formal definition. Traditionally, it refers to a
programming language designed to extend the functionality of or to facilitate
other programs rather than to create standalone applications. Common use
cases of script languages include:

• automation of job execution and control (e.g., in an operating system
shell),
• text processing,
• writing configuration files,
• creating plugins,
• building dynamic web pages (with scripts executed both on the client

side and the server side).

Nowadays, however, the distinction between script languages and general
purpose languages is becoming blurry. It is not that uncommon to implement
stand-alone applications in script languages. Programmers often claim that this
allows to focus on high-level program logic without low-level details obscuring
the view. Many script languages have a reputation of being very flexible, thus
of speeding up the development process, allowing fast prototyping and making
testing easier. Because of this the term “script language” in modern usage often
refers to a certain set of language features rather than to its purpose.

Most of the script languages are interpreted languages executed by a dedi-
cated interpreter or some kind of virtual machine. Scripts (files containing a
code written in a script language) can usually be executed directly without
compilation beforehand. Script languages rarely require that a programmer
declare the variables before usage; they are also often dynamically typed, thus

1

allowing values of different types to be assigned to the same variable. Many
script languages are called dynamic because they include advanced reflection
mechanisms and allow to modify the program at run time (e.g., by evaluating
the text string as a code, by adding new methods to existing objects or by
modifying the type system). Memory management in such languages is almost
always automatic, with no explicit memory deallocation.

The current popularity of script languages is connected with their ap-
plications in Internet programming. There is a vast number of frameworks
facilitating web development for popular script languages, e.g., Catalyst (Perl),
Django (Python) or Ruby on Rails (Ruby). They offer a high level of abstrac-
tion, introduce convenient design patterns (like MVC) and help with common
tasks, such as authentication, form processing or image scaling. Since large
web services are created in such technologies, the issue of performance has
become increasingly relevant. There is a demand for faster interpreters and
many optimisations have been introduced in recent versions of popular script
language implementations.

Perl

Perl is a language that was created primarily with text processing in mind. It
was originally developed by Larry Wall in 1987. From the very first versions
it has supported regular expressions and has contributed their popularization.
Perl’s regular expression syntax has become an informal standard which is
used in many other tools and languages (e.g., Java, JavaScript, Python, Ruby,
.NET).

The motto accompanying Perl is: “There is more than one way to do it”.
This means that the language should not constrain the programmer by forcing
him or her to adapt any particular style. By following this principle there is
a support for multiple programming paradigms: procedural, functional and
object-oriented (although it should be noted that Perl was created with mostly
procedural programming in mind and the objects as well as some functional
aspects were added later on).

To present Perl intended strengths, I enumerate its features highlighted on
the language website [25]:

• object-oriented, procedural and functional,
• easily extendable,
• tools for text manipulation,
• Unicode support,
• database integration,
• C/C++ library interface,
• embeddable,
• open source.

2

Perl 5 has one canonical implementation written in C. It is a classic inter-
preter which parses and compiles the source code into an internal representation
in byte code and executes that byte code. It is also possible to store a program
in precompiled form to reduce its loading time; nevertheless, the interpreter is
still needed to execute it.

The lack of alternative implementations can be partially attributed to the
lack of formal language specification and partially to difficulties with parsing
Perl. Not only does its syntax contain many ambiguous elements, but it also
allows some parts of the code to be executed before the rest is compiled,
which can influence the whole parsing process. That is why it is often said
“Only perl can parse Perl” (where Perl refers to the language and perl to its
implementation). Some Perl programs are impossible to parse even with perl.
It can be proven that Perl can be described only with an unrestricted grammar,
so parsing it requires the use of a Turing machine (not a total Turing machine).
As it is impossible to decide whether the Turing machine’s calculation will halt,
parsing Perl suffers from the halting problem [17].

The long-awaited Perl 6, which is still under development, will have a formal
specification and several independent implementations. The most mature of
the existing implementations is Rakudo Perl, which compiles Perl 6 to run on
a universal Parrot virtual machine.

Python

The Python script language was designed with readability in mind. Its creator
Guido van Rossum, started implementing it in 1989 as a successor of the ABC
programming language. Python is one of the few programming languages where
white space indentation is a part of the syntax. It allows for object-oriented
and imperative programming and has some features known from functional
languages (e.g., lists comprehension).

According to the Python philosophy: “There should be one—and preferably
only one—obvious way to do it”. It encourages uniformity and avoids creating
alternative ways of doing the same task. Such standards are meant to make
the code cleaner and easier to understand for any other Python programmer.

The features listed on the language web page include [9]:

• very clear, readable syntax,
• strong introspection capabilities,
• intuitive object orientation,
• natural expression of procedural code,
• full modularity, supporting hierarchical packages,
• exception-based error handling,
• very high level dynamic data types,
• extensive standard libraries and third party modules for virtually every

task,

3

• extensions and modules easily written in C, C++ (or Java for Jython, or
.NET languages for IronPython),
• embeddable within applications as a scripting interface.

The official Python interpreter is CPython, written in C. It compiles pro-
grams into byte code and executes them on a virtual machine. Multiple
alternative implementations and modifications of the original one have ap-
peared. Jython and IronPython are Python compilers for the Java Virtual
Machine and .NET platform, respectively. Stackless Python is a CPython
modification which implements micro threads and does not rely on a normal C
stack. Cython compiles a large subset of Python into a standard C code.

It should be noted that most alternative implementations support only
Python 2.x, which is no longer being actively developed. Its successor, Python 3,
introduced many changes and is not compatible with the previous versions. It
is fully supported by official CPython implementation.

Ruby

In 1993 Yukihiro Matsumoto felt that no existing script language actually
fulfilled his expectations, so he created a new one—Ruby. He liked some of the
features of Perl and Python, but wanted his language to be more object-oriented
with object concepts similar to Smalltalk. Ruby introduces some aspects of
functional programming through extensive support for anonymous functions
known as blocks (that feature, however, was also inspired by Smalltalk).

Ruby is said to follow “principle of least astonishment”. This means that the
language and standard library behave in such a way as to minimise confusion
for experienced users. Following this principle language designers should avoid
any kinds of special cases, special syntax, special arguments, etc.

According to the language website [31], the following features are character-
istic of Ruby:

• simple in appearance, but very complex inside,
• seeing everything as an object,
• flexibility (possibility to alter parts of the language),
• expressive blocks (closure support),
• extending classes through mixing embeddable modules,
• clean visual appearance.

The main Ruby implementation is referred to as MRI (Matz’s Ruby Inter-
preter). It was originally written as an classic interpreter by Yukihiro himself,
but since version 1.9 it has been redesigned and now works as a specialised
virtual machine with its own byte code representation and instruction set.

Since 2011 the language has an official specification accepted as an ISO
standard. There are several alternative implementations of Ruby, including
JRuby (for JVM), Rubinius, IronRuby (for .NET), MacRuby (using Objective-C

4

run time). All of these offer just-in-time compilation, and MacRuby additionally
offers ahead-of-time compilation. Another alternative implementation is Skarb—
a Ruby to C compiler developed by the author of this thesis [30].

1.2 Memory management

Manual memory management

In the past the situation where only one program resided in the computer
memory at a time was most common. Such programs were usually written
in an assembly language and had direct access to the computer memory and
hardware. The programmer managed the memory manually and knowing under
which addresses the program code was stored and where it was safe to store
his data (thos is still so in some cases, e.g., in micro-controller programming).

With the introduction of multitasking operating systems, the standard way
of handling memory issues has changed, i.e., it is now the responsibility of
the OS to divide the memory between concurrent processes that are generally
unaware of one another. When a new process (program) is to be executed,
the OS reserves memory space for it. This memory can be divided into three
segments: text segment, stack segment and data segment. The text segment
simply contains the compiled code of the program. The stack segment is
generally used for handling subroutine calls and for storing the parameters
and local variables associated with them. The data segment contains global
variables and the so-called heap. The heap is general storage for any data
which were not declared statically in the program code. It has some initial
capacity, but it can be extended later on during program execution through
system calls (sbrk in Unix systems, VirtualAlloc in Windows). Although it
can be managed manually, just as in the case without OS, it is usually accessed
through a memory allocator.

The memory allocator is a set of functions responsible for reserving and
freeing the heap memory in an orderly fashion and for hiding unnecessary details
from the programmer (in C those are the malloc, realloc and free functions).
The allocator keeps track of the addresses which were already reserved and
assures that they can be effectively reused after they are freed. While doing
this, it tries to reduce fragmentation, which renders the memory unusable, as
well as to preserve the locality of successively allocated memory chunks to
improve execution performance. The default allocator is usually included in
libraries provided by the operating system, nevertheless, it is possible to write
a custom one. Performance of the memory allocator plays a significant role in
the overall performance of the software. Choosing an allocator is often a choice
between more economic memory usage and faster program execution. It should
be noted that although using an allocator makes the work of the programmer
considerably easier, as long as there is explicit memory deallocation (free call)
involved it is still called manual memory management.

5

Automatic memory management

In the case of bigger programs memory management using functions such as
malloc and free resembles complicated bookkeeping. It is not unusual for the
programmer to forget to deallocate the memory, thus creating a memory leak,
to attempt to deallocate it twice or use to a pointer which no longer points
to anything. To address this problem, automatic memory management was
introduced. Basically, it requires that the programmer only allocate memory.
Deallocation takes place automatically when the data residing in the allocated
memory chunk are no longer needed—this process is called garbage collection.

The issue here is how to determine which data are not needed. A widely
accepted method is checking memory reachability. If at a certain point during
program execution the chunk of memory can be accessed through a pointer
traversal starting from any reachable local or global variable, the data residing
in that memory can be potentially needed. However, this does not mean that
it will be used. This is the reason why in some cases a programmer relying
on the garbage collection mechanism has to explicitly nullify a reference to be
sure that certain pieces of memory can be reclaimed before the program exits.

Reference counting

The simplest garbage collection algorithm is based on reference counting. In this
approach each allocated chunk of memory is associated with a dedicated counter
which counts the number of references (pointers) referring to that memory
chunk. Each time a reference is destroyed or overwritten, the applicable counter
is decremented; similarly, copying or creating a reference leads to a counter
increment. When the reference count of a memory chunk becomes zero, the
chunk can be safely deallocated.

1 1

2

a

b

H1 H2

H3

0 1

2

a

b

H1 H2

H3

0

1

a

b

H2

H3

1

a

b

H3

Figure 1.1: A simple scenario of garbage collection using reference counting.
a and b represent local pointers, while H1, H2 and H3 are compound objects
allocated as continuous memory chunks on the heap.

6

A method of garbage collection using reference counting is illustrated in
Figure 1.1. During the first step variable a is overwritten, which causes a
decrement of the reference counter of object H1. As its value becomes zero,
it is possible to destroy the whole object. There are references to H2 and H3

stored in H1, so it is necessary to update their counters as well. It may happen
that H2 can also be destroyed but H3 is still needed. This scenario clearly
shows that destroying a single reference can lead to the destruction of multiple
objects.

Apart from simplicity, the huge advantage of reference counting garbage
collection is that the memory is reclaimed as soon as it is not needed (I will
later show that it is different with other garbage collection mechanisms). The
programmer is fully aware when this happens and has a certain degree of
control over it. Reference counting can be used with most standard memory
allocators.

On the other hand, there are some important drawbacks of this memory
management technique. First of all, it is necessary to reserve additional space
for the reference counter along each memory chunk which increases memory
consumption. Then, in a naive implementation, each operation on the references
leads to counter updates, even if this does not result in memory deallocation—
these operations add an additional cost to the program execution. Finally,
it is impossible to free cyclic structures by using reference counting because
counters associated with the memory chunks of such a structure will never
reach zero. To deal with cycles an additional mechanism is needed, which will
increase algorithm complexity.

The tracing garbage collector

A slightly more sophisticated class of garbage collection algorithms are the
tracing garbage collectors. Such a garbage collector does not check object
reachability in real time, i.e., after every operation that could change it, but
instead it works in cycles. The cycle typically starts when the garbage collector
is notified that there is a need for more memory. During the cycle the memory
is traversed to determine which objects are still reachable and which can be
safely deallocated. The traversal is guaranteed to visit all reachable objects
but does not follow reference cycles.

The tracing garbage collector has one huge advantage in comparison with
reference counting: it can handle reference cycles without any additional
mechanisms. Also, there is no overhead associated with pointer operations.
However, it lacks the predictability that is characteristic of reference counting:
the programmer generally does not know when the garbage collection cycle will
occur and when unused objects will be deallocated. Naive implementations of
tracing garbage collectors work in stop-the-world manner. This means that the
execution of the whole program is halted until the collection cycle is finished.
This is generally undesirable behaviour, especially in interactive or real-time
applications.

7

There are many kinds of tracing garbage collectors, each with its own
characteristics. Richard Jones, in his book on garbage collection [15], describes
two approaches as classical ones: mark-and-sweep and the copying garbage
collector. I shall describe them shortly.

Mark-and-sweep collector

With the mark-and-sweep algorithm each collection cycle consists of two phases.
The first one is the mark phase, during which the memory is traversed following
a program data structures. The traversal starts from the so-called roots, i.e.,
pointers immediately accessible at the current point of program execution. The
set of roots typically includes all local variables (residing on the stack), global
variables and values stored in CPU registers. The algorithm visits all objects
accessible from the roots, then objects accessible from newly visited objects,
etc. All visited objects are marked, which usually means setting an appropriate
bit in the object’s structure or some additional structure used by the garbage
collector. An already marked object cannot be marked for the second time and
any objects referenced by its fields are not visited repeatedly—this guarantees
that the traversal will eventually end. The second phase of the algorithm is the
sweep phase. It includes some form of heap memory traversal and reclaiming
of unmarked objects.

root set

H1

H2

H3

H4

H5

H6

Figure 1.2: Heap objects after the mark phase. Hi are objects allocated on the
heap. The circle in the top left corner of an object represents the mark bit.

A simple scenario of the mark-and-sweep garbage collector is presented in
Figure 1.2. It is visible that after the mark phase, H4 and H6 are left unmarked
and can be deallocated. As opposed to garbage collection based on reference
counting, with the mark-and-sweep method H4 and H6 can be deallocated in
any order since the reference from H4 does not affect H6 reachability.

The mark-and-sweep garbage collector can generally be used with any mem-
ory allocator, however, in most cases it is used with a customised allocator that
optimised to work specifically with certain garbage collector implementation.
Such a garbage collector can be universal and can work without any special

8

information stored at compile time when it is implemented as a conservative
collector. This means that the garbage collector scans all of the reachable
memory (CPU registers, program stack, thread stacks) and treats everything
that can potentially be a pointer as a pointer. This can lead to a situation
when an ordinary numeric value is treated as a valid pointer and prevents some
objects from being freed. However, it was experimentally demonstrated that
this is quite unlikely and does not introduce successively growing memory leaks.

Copying collector

The second presented approach is the copying garbage collector. It divides the
memory into two subspaces: reachable objects are kept in one of them and the
other is considered to be empty (i.e., containing only garbage). All new objects
are allocated into the first one. When the collection cycle starts, a pointer
traversal similar to that from the mark phase of the mark-and-sweep collector
takes place. The difference is that the objects, instead of being marked, are
copied to the other memory subspace. After such a traversal the roles of the
subspaces are swapped—the first one is now considered empty and the second
contains only reachable objects (and free space for new objects).

The copying garbage collector needs a special memory allocator and demands
that any object be moved at run time. It generally cannot be implemented in
a conservative manner. This makes such garbage collectors less universal than
the mark-and-sweep ones.

Memory management in Perl

There are three basic data types in Perl: scalars, arrays and hashes. All of
them are heap-allocated. The memory is managed with reference counting with
a heavy accent on memory reuse. This means that in many cases a variable
whose reference counter has reached zero is not not truly freed but instead is
cleared and kept for later usage.

Perl supports weak references which have the same features as normal
references but do not increment the object reference counter. In other words, a
weak reference is not enough to keep an object alive. There is also an undef
function which allows to explicitly undefine a variable; however, it does not
free the memory, it only cleans it.

There is no mechanism to free reference cycles in Perl. Structures in such
cycles are deleted only after the process exits. Naturally, it is possible to break
a cycle explicitly (e.g., by using weak references or undefining variables).

This memory management schema is well-suited for the needs of short
scripts performing batch processing or for interactive programs that are not
processing any bigger data. However, in long-living processes the accumulation
of garbage trapped in reference cycles may lead to a huge memory bloat.

9

Memory management in Python

In CPython, i.e., the official Python implementation, virtually all objects are
allocated on the heap and garbage is collected through reference counting.
Only pointers to heap-allocated objects are stored on the stack. Numbers and
character strings are also represented as objects. The language supports object
finalisers which are called when the object is to be deleted because its reference
counter reached zero. With reference counting it is common that multiple
objects are deallocated at once. Python guarantees that they are reclaimed in
topological order, i.e., when an object’s finaliser is called the objects referenced
in its fields still exist. Python supports weak references just like Perl.

Reference counting does not handle cases with cycles in references. To ad-
dress this problem an additional mechanism based on a tracing garbage collector
was introduced. It employs a special tracing garbage collector algorithm to
analyse all objects that were not deleted by the reference counting mechanism
and can detect cyclic references. A cycle that is unreachable from the outside
can be safely deleted, assuming that the objects from the cycle do not have
finalisers. It is impossible to delete cycles with finalisers because the order in
which the finalizers should be invoked cannot be determined. The garbage
collector puts such objects on a special list and expects that the programmer
will deal with them by breaking the cycle manually.

The tracing garbage collector performs the collection periodically after
a specified threshold of allocations and deallocations is exceeded (it is not
connected with current memory usage). It works in a stop-the-world manner,
so the whole program execution freezes until the collection is finished. This
can be a problem in interactive applications, thus there are various attempts to
deal with it. The garbage collector interface allows the programmer to change
the threshold of the allocations and deallocations or to force the collection to
be performed at some point. However, sometimes the best solution is to avoid
reference cycles in the program altogether (e.g., by using weak references) and
to turn off the tracing garbage collector.

Alternative Python implementations, such as Jython and IronPython, rely
on the garbage collectors of their run time environments. PyPy uses a custom
tracing garbage collector for all objects. The developers of these alternative
implementations have problems with replicating CPython behaviour connected
with garbage collection—the most important matter are finalizers, which, in
CPython, are called as soon as an object is not needed and, in most other
implementations, in some undefined future.

Memory management in Ruby

Just as in Python, in Ruby there are no non-object values. Consequently,
in the MRI all objects are allocated on the heap and only the pointers are
stored on the stack. There is one notable exception to this rule—small integers
(represented by Fixnum instances) are represented directly by their pointers. In

10

every pointer a special bit indicates whether it is really pointing to anything or
whether it should be treated as an integer. This is only a matter of optimisation
and does not affect Fixnums behaviour in any way.

The MRI uses tracing garbage collector to the manage memory. The
collection process is executed when there is no memory to allocate a new object
to. Because of the way the MRI communicates with C extensions (functions
written in C extending the functionality of Ruby), the garbage collector has to
work in a conservative manner. It also acts in a stop-the-world fashion, which
can introduce pauses during program execution.

In Skarb, Ruby to C compiler, memory management strategy is very similar.
It uses the Boehm-Demers-Weiser garbage collector—an open source conser-
vative garbage collector for the C language. [3] A notable difference is that
BDW GC works iteratively: instead of stopping execution of the program
completely until the full collection is done, it attempts to split the work into
parts and does a bit with every allocation. It should make the long pauses less
probable.

1.3 Cost of memory management

An important question to be asked is the question of memory management
costs. These costs include two factors: the memory consumption overhead (i.e.,
the portion of memory reserved for the process but not used to store any useful
data) and CPU time spent in memory management routines. Due to the recent
technological advances computer memory has become relatively cheap. If a
program consumes too much memory in most situations installing an additional
memory module is an affordable solution. As other computer compontents are
more expensive, reducing computation time throught purchasing new hardware
is often impossible. Because of this, execution time overhead seems currently
more important and I will focus on it.

The question is how much time does an executed process spend on managing
its own memory instead of doing work that is useful from the user’s perspective.
The costs of operations needed for memory allocation, deallocation and, in case
of automatic memory management, identifying unused memory chunks should
be included. However, the costs of functions reserving additional memory for
the process and extending its heap are excluded. This is work done by the
operating system and is not a subject of optimisation in a language interpreter.

With memory management based on malloc and free, all that has to be done
is to measure the time spent in these functions. With garbage collection based
on reference counting, the time spent on counter updates is to be included. In
the case of a tracing garbage collector, the cost of the collection cycle should
be included instead.

11

Experiment with popular C/C++ programs

There is a classical study by Detlefs et al. [7] which compare the allocation
costs of various memory allocators and the contemporary version of the Boehm-
Demers-Weiser garbage collector. The authors used profiling tools to measure
the time spent on memory allocation in popular C and C++ programs. Selected
programs included:

• Xfig—an interactive vector graphic program,
• Make—a utility for automation of building executables from source files,
• Gakw—a GNU AWK interpreter,
• GhostScript—a Postscript interpreter.

The time spent on the internal memory management mechanisms of AWK
and Postscript was not included. With Xfig the test case consisted of drawing
simple geometrical shapes, replicating and deleting them. Other programs were
processing input files typical for them: a large makefile, a text formatting script
and 126-page user manual, respectively.

BDW 2.6 libg++ 2.4.5

Xfig 34.5% 3.5%
Make 14.3% 3.5%
Gawk 65.5% 11.9%
Ghost 54.8% 6.5%

Table 1.1: Percentage of execution time spent on memory management in C
and C++ programs.

Table 1.1 is an excerpt from the results of the cited study. BDW is compared
with the malloc implementation from the GNU C++ library, which later evolved
into Doug Lea malloc. [20] Unsurprisingly, with a tracing garbage collector
the percentage of time spent on memory management routines was much
higher than with a standard malloc. The time spent on managing memory
always constituted a substantial portion of the total execution time, however,
the exact numbers varied greatly depending on which program was analysed.
These results do not necessarily show the advantage of malloc/free memory
management over tracing garbage collector, but they do signalise that the
performance of the garbage collector has a huge impact on the performance of
the program.

Research on Lisp, ML and Smalltalk

Many articles were written on garbage collection in functional languages such
as Lisp or ML. These observations are somewhat relevant because both Python

12

and Ruby have incorporated functional language features, such as continuations,
which lead to more intensive heap usage. Diwan et al. [8] benchmarked six
SML/NJ compilers and concluded that garbage collection accounts for 19% to
46% of total program run time. Classic studies by Steele [29] and Ungar [32]
reported that the average time spent on memory management in contemporary
Lisp interpreters was around 30%. In the same work Ungar [32] presented a
garbage collection algorithm for Berkeley Smalltalk which accounted for only
2% of application run time. Chambers [5] pointed out that Ungar’s experiments
were biased because he linked a highly optimised garbage collector implemented
in an assembly language with a relatively slow and bulky Smalltalk interpreter.
The fraction of time used for memory management was extremely low because
the other operations were done less efficiently. Chambers also predicted that
with an advance in optimising compilers and interpreters, the fraction of time
spent on memory management in program execution will rise.

Experiment with modern script languages

I am unaware of any recent study analysing the costs of memory management
in the interpreters of Perl, Python or Ruby. Therefore, I conducted a small
experiment myself based on simple programs from an older version of the
Computer Language Benchmarks Game [10]. Using the gperftools [11] profiler
and its Ruby version, perftools.rb [12], I measured the portion of time spent on
memory management in both the Ruby and Python programs. The run time
environments being tested included Python 3.2.3, Ruby 1.9.3 and Skarb. The
first two are official languages implementations and the third is an experimental
Ruby to C compiler developed as a part of my bachelor thesis. Notable difference
between Skarb and the other environments is that it aims for compilation to C
and then to native machine code instead of real-time interpretation.

As was mentioned before, Skarb uses a BDW garbage collector (currently
in version 7.1) and Ruby relies on its own garbage collector implementation.
Python’s hybrid memory management strategy (reference counting and tracing
garbage collector) made measurements a little harder. For the profiler to take
into account all memory management operations, Python’s source code had to
be slightly modified. In the original version the reference counters are updated
through simple macros—I transformed them into inline functions. From the
performance perspective they should be equivalent, but the inline function calls
can be tracked by the profiler.

Test cases included:

• Ackermann—calculating the value of the Ackermann function,
• Matrix multiplication—the multiplication of large matrices containing

floating-point numbers,
• Quicksort—sorting large arrays of floating-point numbers with Quicksort,
• Binary trees—allocating and deallocating large number of binary trees.

13

Calculation of the Ackermann function was done both in integer numbers and
floating-point numbers to ensure that values would be allocated as objects
in Ruby 1.9. Programs were implemented in both languages using the same
strategies and were to be as similar as the language differences allowed.

Each test program was executed five times and the mean value was calculated
from the collected values. C source code generated by Skarb was compiled with
gcc 4.7 compiler. Programs were executed on a computer with AMD Phenom
II X2 555 3.2 GHz processor, the operating system was 64-bit version of Arch
Linux.

Skarb Ruby 1.9.3 Python 3.2.3

Ackermann (integer) 55.3% 0.0% 25.5%
Ackermann (float) 71.2% 37.8% 22.7%
Matrix multiplication 31.5% 47.4% 22.9%
Quicksort 55.4% 25.1% 27.1%
Binary trees 56.4% 27.5% 48.2%

Table 1.2: Percentage of execution time spent on memory management in both
the Ruby and Python programs.

The results are presented in Table 1.2. As one can see, all programs
operating on large sets of data use the heap intensively and a large fraction
(over 20%) of their execution time is spent on memory management.

An interesting case is the Ackermann function. Its natural implementation
in a language such as C would not use the heap at all. The same applies to its
integer version in Ruby. Since the original Ruby implementation treats small
integer numbers as immediate values, no allocation or deallocation takes place.
However, when the calculation is done in floating-point numbers, each value is
represented as a separate heap object which needs to be allocated. During the
calculation of the Ackermann function many small objects are created—the
heap is used intensively. In both Skarb and Python both floating-point and
integer values are represented as objects, so both versions of the Ackermann
function manage memory in a similar fashion.

Unfortunately, because of the complexity of Perl 5 internals, it was impossi-
ble to do a similar test for Perl without bigger modifications of the source code.
However, similarities in the object system and memory management strategies
between Perl and Python provide a basis for the assumption that Perl programs
would also spend considerable time on the memory management.

As we can notice, with modern systems and runtime environments memory
management still consumes large fractions of program execution time. In
languages, which treat all values uniformly as heap-allocated objects even
simple computation can become memory intensive tasks. Any optimisations
of the current memory management techniques would improve the overall
performance of script languages.

14

Chapter 2

Memory management
optimisations

Various techniques were proposed to improve the performance of automatic
memory management mechanisms. The most straightforward way is to improve
the garbage collection algorithm. Much research was done in this area, which
lead to the development of heuristics such as generational garbage collection,
where objects are segregated into generations depending on their lifespan [21,
32, 28, 27]. Many optimised modifications of basic algorithms described in the
previous chapter were proposed. The choice of algorithm is highly dependent
on the language and run time environment.

Not only the garbage collector, but also the memory allocator can be
a subject of optimisation. As expected, multiple allocator algorithms with
distinct characteristics exists [33]. Choosing the best one under the given
circumstances is not a trivial task. The approach suggested in practical books
for programmers [4] was to construct custom memory allocators for specific
classes of objects. This would allow to make some optimisations based on
additional information on the object structure. On the other hand, using
custom allocators may lead to additional memory fragmentation and may make
global memory optimisations impossible. Experiments conducted by Emery
Berger et al. showed that in many cases custom allocators perform worse than
optimised general-purpose allocator [1].

Another kind of possible optimisations are optimisations based on data
locality. They stem from the notion that the program’s performance is limited
by both memory access time and page translation costs. To reduce these costs
and to hide access latency, mechanisms such as the translation lookaside buffer
and multi-level caches were introduced. However, it was suggested that they are
not fully utilised because of poor program data layout. An effort was made to
improve this situation with specific modifications of the garbage collector [16].

Another class consists of various optimizations based on static code analysis.
They are generally complementary with the standard techniques and, to a
great extent, independent of the garbage collector mechanism being used. I
will include the following optimisations in this class:

15

• Stack allocation—identifying objects local to a function and allocating
them on the stack.

• Region allocation—identifying groups of objects with similar lifetime and
allocating them in a single memory region which can be free with one
instruction.

• Scalar replacement—replacing objects with simple values or storing object
data in CPU registers.

• Object reuse—reusing the dead objects’ memory for newly created objects,
often referred to as compile time garbage collection.

Among all these techniques, stack allocation and object reuse are the
most universal. They do not require any in-depth knowledge of the run time
environment or the garbage collector. As opossed to the optimisations based on
data locality or scalar replacement, they are machine and system independent.
If a conservative garbage collector is used, it is possible to implement these
optimisations without modifying existing memory management mechanisms.
Because of those merits, I have chosen stack allocation and object reuse as
potentially promising techniques and decided to focus on them.

2.1 Stack allocation
In languages such as C all values and structures created inside a function are
typically allocated on the stack. The only way to allocate memory on the heap
is to use explicit allocation instructions. In C++ structures becomes objects,
which are also allocated on the stack by default and can be allocated on the
heap using the new operator. In languages such as Java, all objects are created
using the new operator and in most environments are heap-allocated by default.
The interpreters of languages such as Ruby or Python allocate even simple
numerical values on the heap, and the stack contains only object references.
The idea behind stack allocation optimisation is to change this behaviour and
to allocate some objects on the stack.

The sole process of stack allocation is very simple. Typically, a stack frame
consists of a few blocks, as is presented in Figure 2.1. The topmost block is
the region of memory reserved for local variables. To reserve more memory
dynamically at run time, all that has to be done is to move the stack pointer.
Naturally, only the current (topmost) stack frame can be extended this way.
This way of reserving memory is very fast and does not introduce memory
fragmentation. All reserved memory is reclaimed when the function exits.

Stack-allocated objects are allocated on the stack frame of the function in
which they are created. As they are reclaimed automatically when the function
exits, only objects that do not escape the function context can be allocated on
the stack. To identify them automatically, i.e., without additional declarations
from the programmer, some form of escape analysis is needed. Various works

16

Local variables

Return address

Parameters

. . .

Current stack frame
Frame pointer

Stack pointer

Figure 2.1: Typical layout of a stack frame.

investigating the possibility of stack allocation have focused on finding the best
algorithms for escape analysis.

The term escape analysis was probably used for the first time in an article
by Young Gil Park and Benjamin Goldberg [24]. They analysed the escape
state of list cells created in functional languages. Based on escape analysis,
they proposed stack allocation and region allocation optimisations as well as
in-place object reuse (a form of compile time garbage collection described in
the next section). Their work remained theoretical and no prototype system
was implemented.

Thomas Kotzmann and Hanspeter Mössenböcket explored the possibilities
of stack allocation and scalar replacement in the context of dynamic compilation
of the Java code [19]. They presented a fast escape analysis algorithm and
implemented it for the Java HotSpot compiler. Because they were examining
dynamic compilation, they focused on analysis speed rather than precision.

Jong-Deok Choi et al. proposed a connection graph abstraction, which
captures the relationship between objects and pointers, as a means for precise
escape analysis [6]. They have implemented this method in a static Java
compiler and have used the obtained information for stack allocation and
elimination of synchronisation operations in a multi-threaded context.

Bruno Blanchet implemented escape analysis and stack allocation optimisa-
tion for the Java-to-C compiler turboJ [2]. In his variant of escape analysis he
used a form of graph abstraction, but used integers to represent graph paths.
Such an implementation made escape analysis remarkably faster. He presented
benchmarks that showed that stack allocation can decrease program execution
time by up to 43%.

2.2 Compile time garbage collection

Commonly used garbage collection mechanisms tracing object reachability at
run time were described in the previous chapter. I will refer to them as to
run time garbage collection (RTGC). The complementary mechanism which
finds dead objects using static analysis is called compile time garbage collection

17

(CTGC). Memory allocated for objects which are certainly dead at some point of
program execution can be reused for newly created objects. Such a mechanism
reduces the number of allocations and total memory usage of the program. It
should also speed up program execution because it makes the run time garbage
collector cycles occur less frequently.

To perform compile time garbage collection, some kind of static program
analysis is needed in order to identify dead objects. The analysis can be
relatively simple and based on a few identified expressions leading to the creation
of a short-lived object or remarkably complex, based on a comprehensive
program abstraction. However, even the most complex form of static analysis is
never fully precise because it lacks information available only at run time. That
is the reason why CTGC can only be a complementary method and cannot
substitute RTGC.

Escape analysis performed for the purpose of stack allocation is in fact a
special case of object liveness analysis performed for CTGC. In escape analysis,
the goal is to identify objects that outlive the function in which they are created.
In CTGC analysis the goal is to identify objects that die before other objects
are created.

Although the concept of CTGC is quite old, it is still rarely encountered in
modern compilers. In the past the possibility of compile time garbage collection
was analysed mostly in the context of functional and declarative languages
such as Lisp and Prolog [13, 18, 23]. There is also an article on CTGC in
Smalltalk [26] which describes in fact the realisation of a stack allocation
concept.

In more recent years a practical CTGC system was developed for the Mercury
language [14, 22]. Mercury is a strongly typed logic programming language
based on Prolog. Its syntax allows to perform very precise static analyses of
object liveness. The developed CTGC system identifies dead objects and allows
to reuse them either in the same function or across functions. The presented
benchmarks showed major (up to 50%) memory consumption reduction and
noticeable speedups (up to 15%).

18

Chapter 3

Optimisations implemented in the
Skarb compiler

I have decided to adapt the approach described in [6] and to implement a
mechanism for automatic stack allocation for the Skarb compiler [30]. Skarb
was chosen because of the relative simplicity of its internals and the fact
that I already had in-depth knowledge concerning its design. This made any
necessary modifications considerably easier to make than would be in the case of
a different compiler. Furthermore, a clear distinction between the compilation
and execution phase, which is present in a classic static compiler such as
Skarb, allows to get the most profit out of such optimisations. Although Skarb
currently accepts only a subset of the Ruby language, it is mature enough
to test various optimisations and to check if they introduce any significant
performance gain.

In this chapter I describe a detailed procedure of building a connection
graph abstraction for Ruby programs. I present how this kind of abstraction can
be used for escape analysis. Then details on the implemented stack allocation
optimisations relying on escape analysis follow. Finally, I introduce another
kind of optimisation based on a connection graph—a mechanism for reusing
memory allocated for local objects. All described optimisations are newly
introduced mechanisms previously absent in Skarb.

3.1 Connection graph abstraction

The connection graph is a form of program abstraction introduced by Choi et
al. [6] as a means for escape analysis. The connection graph allows to establish
reachability relationships between objects and object references. After such
relationships are established, it is easy to identify which objects can only be
reached through local references. I will call these objects local objects. They
cannot be reached from outside the method so they do not escape the method.

Normally, when speaking about objects what is meant are the run-time
objects, i.e., objects created during program execution. In a connection graph

19

the objects which are represented are compile-time objects. Generally, each
compile-time object is connected with a single object constructor call in the
program code. In this thesis the run-time objects will be called concrete objects
and compile-time objects will be called abstract objects. A single abstract object
can represent multiple concrete objects because its corresponding constructor
call statement can be executed multiple times (e.g., in a loop).

Definition 1. A connection graph is a directed graph CG = (Vo ∪ Vr, Ef ∪
Er ∪ Ed ∪ Ep), where:

• Vo = Vos ∪ Voph is a set of object nodes.

– Vos is a set of standard object nodes representing known objects
(i.e., those which can be connected with a specific constructor call
statement).

– Voph = Vop ∪ Vof ∪ Vog is a set of phantom object nodes, representing
unknown objects which may or may not exist

∗ Vop is a set of nodes representing the formal parameters of a
method.
∗ Vof is a set of nodes representing the unknown values of an
instance variable (object field).
∗ Vog is a set of nodes representing the unknown values of a global
variable (static field).

• Vr = Vrl ∪ Vrf ∪ Vrg ∪ Vre is a set of reference nodes.

– Vrl is a set of nodes representing local variables.

– Vrf is a set of nodes representing instance variables (object fields).

– Vrg is a set of nodes representing global variables or class variables
(static fields).

– Vre is a set of nodes representing references returned by expressions
such as function calls, conditional statements, etc.

• Ef is a set of field edges. A field edge denotes that an object has a certain
field. p→ q ∈ Ef ⇔ p ∈ Vo ∧ q ∈ Vrf

• Er is a set of reference edges. A reference edge denotes that an object may
be reachable through certain reference. p→ q ∈ Er ⇔ p ∈ Vr ∧ q ∈ Vo

• Ed is a set of deferred edges. A deferred edge denotes that a reference
points to the same object as another reference. p → q ∈ Ed ⇔ p ∈
Vr ∧ q ∈ Vr

• Ep is a set of placeholder edges. A placeholder edge denotes that a phantom
object node takes place of an unknown initial value of an instance variable.
p→ q ∈ Ep ⇔ p ∈ Vof ∧ q ∈ Vrf

20

The main difference between standard object nodes and phantom object
nodes is that in the case of a phantom object it is impossible to connect it with
any specific constructor call. The existence of such an object is only deduced
from the context. Phantom objects can be merged with real objects at some
point of execution. The details are given in the subsection concerning method
calls.

Deferred edges do not introduce any information relevant from the perspec-
tive of escape analysis. They exist only to reduce the number of edges created
during the graph updates after the assignment statements. The details are
given in the subsection concerning assignments.

Each translated method has its own connection graph containing objects
reachable from this method. The methods are identified by the owner, name
and types of the arguments passed. The nodes of the connection graphs are
identified by their unique names. Name of a Vrl or Vrg node is simply the name
of the variable. The name of a Vo or Vre node is an automatically generated
numerical id with a prefix depending on the node type. The name of the Vrf

node is the name of the object node combined with the name of the field. Two
nodes from different connection graphs with the same name are treated as the
same node occurring in different contexts. Such correspondence between nodes
of separate graphs is used in the interprocedural analysis, which is described in
later sections.

Definition 2. Fid(v) is the name of an instance variable (object field) repre-
sented by field node v ∈ Vrf .

Definition 3. Owner(v) is a node from Vo representing the owner of the field
represented by node v ∈ Vrf . p = Owner(v)⇔ p→ v ∈ Ef .

Escape analysis

Based on a method’s connection graph, it is possible to perform escape analysis
by following three simple rules:

1. Each node has an escape state: no escape, arg escape or global escape.
The initial state is no escape.

2. The state of nodes representing an object passed to a function as an
argument or a value returned from the function should be set to arg
escape. The state of nodes representing global variables should be set to
global escape.

3. If a node’s escape state is set to arg escape or global escape, then the
nodes pointed to by its outgoing edges should also have their escape
states set to the same value.

After the escape state is propagated in this manner, every object in no escape
state is recognised as a local object.

21

def foo(p)
a = 1
b = "abc"
a = p
return b

end

r e t u r n

b

self

p

’p1

’o1a

’o2

Figure 3.1: Connection graph for the method foo.

Definition 4. Escape(v) is an escape state of node v.

Figure 3.1 presents a simple connection graph for method foo. The rectangles
represent object nodes and the ellipses represent reference nodes. The node
colour represents the escape state: white is for no escape and grey for arg escape
or global escape. As one can see, there is an object node self representing an
implicit argument—the object being the method owner.

The escape analysis performed with the help of a connection graph does not
need to be of an absolute precision. It can be allowed for some local objects to
be mistakenly treated as objects which escape the method. What is important
is to make sure that the opposite will not happen: no escaping object should
ever be treated as a local one.

Intraprocedural analysis

The connection graph is built incrementally and updated after each translated
statement. In the next sections I describe the way each kind of language
statement is modelled in a connection graph. Since any statement can be
treated as an expression returning value, information about a graph node
representing that value is attached to the statement. This information is
used while modelling compound expressions, which take sub-expressions as
arguments.

The proposed way of building a connection graph is both flow-sensitive
and path-sensitive. This means that the order of program statements and
conditional branching is taken into account. In fact, in each conditional branch a
different connection graph is built, and when the branches converge these graphs
are merged. The details are given in the paragraphs concerning conditional
blocks.

22

’o4

’o1 ’o2 ’o3

’o4_[]

[1,2,3]

Figure 3.2: Modelling an implicit array constructor.

Object creation

Object.new, 1, 1.1, "abc", [1, 2], {"a" => 1}

In Ruby there are three types of statements leading to an immediate object
creation: call of a new method of any class object1, the use of numeric or string
literal or the use of a special form of an array or hash constructor. Each of
these statements leads to the creation of a new object node in a connection
graph. This node represents the return value of the statement. In the case of
an implicit array or hash constructor, a special indexer field node is created for
the object and it is linked with the nodes representing values of arguments. It
is presented in Figure 3.2.

Assignments to variables

a = 1, @a = 1, @@a = 1

The modelling an assignment consists of a couple of steps. First, it is necessary
to check if the reference node representing a variable is present and to create it
if this is not. The second step is the so-called bypass operation which replaces
deferred edges with appropriate reference edges. The pseudo-code for this
operation is presented in the algorithm block 1.

After bypass of the node v is performed, all outgoing edges of v should be
deleted. Then the actual assignment can be modelled by linking the variable
node with the node representing the value of the expression on the right side
of the assignment. If that value is represented by an object node new than a
reference edge is created. If it is represented by an another reference node than
a deferred edge is created instead.

An example of a connection graph modification during an assignment is
presented in Figure 3.3. After the first two assignments, reference node a points

1Normally this method could be overridden, but the current version of Skarb does disallow
this. It can be safely assumed that new method will always create a new object.

23

Algorithm 1 The procedure replacing deferred edges incoming to a node with
appropriate reference edges.
function Bypass(v)

for all p ∈ Vr : p→ v ∈ Ed do
for all q ∈ Vr : v → q ∈ Ed ∪ Er do

Add edge p→ q.
end for
Delete edge p→ v.

end for
end function

’o1

a

b

→

’o1

a

’o2

b

a = 1
b = a

a = 1
b = a
a = 2

Figure 3.3: Modelling assignment to a local variable.

to an object node and reference node b points to a. Then, after the third
assignment a Bypass operation is performed for node a, and node b is linked
directly with the object node ′o1. Node a points to a the newly created object
′o2.

Three kinds of assignments can be distinguished: assignment to a local
variable, assignment to an instance variable and assignment to a global variable.
Assignments to local variables are modelled exactly as described in the previous
paragraph. Assigning to an instance variable requires additionally assuring
the existence of an edge between the self object node and the field node (it
is always the self node because in Ruby it is impossible to affect an instance
variable from the outside of the object, i.e., all instance variables are private).
When assigning to a global variable, the node representing the value of the
right-hand expression has its escape state set immediately to global escape.
This is a simplification which allows to avoid the tracking of values of global
variables during the execution of all functions.

24

Referring to a variable

a, @a, @@a

Referring to a variable in a program code can be modelled as a simple statement
whose return value is a reference node corresponding to this variable (if such a
node does not exist, it should be created). Furthermore, it should be checked
if this reference node has any outgoing edges. If it does not then there are
two possibilities: the variable points to the nil object or to an unknown object
created outside of the method. In the case of a local variable only the former
can happen. In the case of an instance variable or a global variable, the latter
safely can be assumed. To model a such situation a new object node has to be
created and linked with the variable node. Its escape state should be set to arg
escape or to global escape.

With a global variable the created object node is the phantom object node
g ∈ Vog. With an instance variable it is node n ∈ Vof . Every node from Vof is
connected with a placeholder edge to an instance variable node. If v ∈ Vr is
a variable node, then edge n → v ∈ Ep is added. To make the relationships
between nodes easier to follow, I will introduce a definition:

Definition 5. Initiator(n) is an instance variable node v ∈ Vrf which
initiated the creation of n ∈ Vof . Initiator(n) = v ⇔ n→ v ∈ Ep

Conditional blocks

while, if, case

A conditional block is a group of instructions inside a loop or a single branch
of a conditional statement (if or case). Opening a new block results in creating
a copy of a current connection graph. Statements executed inside the block
affect only the copy of the original connection graph. When the block is closed,
the two graphs CG

′
= (V

′
, E

′
) and CG

′′
= (V

′′
, E

′′
) are merged into a new

graph CG = (V
′ ∪V ′′

, E
′ ∪E ′′

). Then, a special update operation is performed
on the nodes of the new graph to change the deferred edges into reference edges
if the node at the end of a deferred edge points to something else in the new
graph. The pseudocode for this operation is presented in algorithm block 2.

Algorithm 2 Procedure of updating a connection graph after merging a
conditional block.
for all v ∈ Vr do

if
{
p ∈ V : v → p ∈ E

′} 6= {
p ∈ V : v → p ∈ E

′′} then
Bypass(v)

end if
end for

After the update, graph CG becomes the main connection graph represent-
ing the pointers and object relationships after execution of the block.

25

’o1

a

b

+

’o1

a

’o3

b ’o2 =

’o1

a

’o3

b

’o2’c1

a = 1
b = a

a = 1
b = a
if 2

a = 3
...

a = 1
b = a
if 2

a = 3
end

Figure 3.4: Merging graph built in a conditional block with the old connection
graph.

The process of modelling a conditional block is depicted in Figure 3.4. The
leftmost graph represents the situation before entering the conditional block.
The graph in the middle is the situation after performing an assignment inside
the conditional block. The rightmost graph is the new connection graph created
through the merge and update procedure. Object node ′o2 represents value 2
in the if statement condition. Reference node ′c1 represents the value returned
by the whole if statement.

Ruby if and case statements are expressions returning a value which also
has to be modelled in a connection graph. The value of such statement is the
value of the last expression from the chosen conditional branch. To reflect
this, a special expression node e ∈ Vre is created and linked with the nodes
representing values of last expressions from each conditional branch.

Interprocedural analysis

Modelling of the method calls requires some more complex operations. Basically,
it uses information from the connection graph of the callee is used to update
the connection graph of the caller. To make the description easier to follow, I
will introduce two auxiliary definitions.

Definition 6. PointsTo(v) is a set of all object nodes from Vo which are
pointed to by reference node v ∈ Vr.

o ∈ PointsTo(v)⇔
v → o ∈ Er ∨ (∃p∈Vr v → p ∈ Ed ∧ o ∈ PointsTo(p))

Intuitively, the PointsTo set is a set of all objects which can be reached
from a given reference node following the reference or deferred edges. The

26

definition is recursive: if the connection graph contains cycles the recursion can
be infinite. In practical implementation an additional mechanism is needed to
avoid processing the same node twice.

Definition 7. Consider a caller method A with connection graph CGA and a
callee method B with graph CGB. Each subset from CGA will be marked with
A and each subset from CGB will be marked with B. MapsTo(v) is a set of all
object nodes o ∈ V A

o from method A which correspond to object node v ∈ V B
o

from method B.

• If v ∈ V B
os :

– If v ∈ V A
os it maps to itself. MapsTo(v) = {v}

– Otherwise, it maps to a new object n ∈ V A
os . MapsTo(v) = {n}

• If v ∈ V B
og it maps to itself (possibly initiating the creation of a new node

v ∈ V A
og)

• If v ∈ V B
oph:

– If v ∈ V B
op it maps to an actual object a ∈ V A

os which was passed as a
corresponding parameter. MapsTo(v) = {a}

– If v ∈ V B
of it maps to all objects from V A

o pointed to by field with the
same id of a corresponding object from A.

o ∈MapsTo(v) ⇔ ∃f∈V A
rf

Fid(f) = Fid(v) ∧
Owner(f) ∈MapsTo(Owner(Initiator(v))) ∧
o ∈ PointsTo(f)

The definition of the MapsTo set is quite complex. Generally speaking,
the role of the set’s construction procedure is to translate the names of the
object nodes from one connection graph to another and to establish a relation
between them. Some of its characteristics have to be emphasised.

First, all of the standard objects present in B and absent in A are mapped
to new objects. This means that if B were a method creating an object and
returning it as a return value, the objects returned by different calls of B
would be treated as different objects. Two separate concrete objects can be
modelled as a single abstract object in the B connection graph and as two
abstract objects in the A connection graph. This is desirable behaviour because
abstract objects should be distinguished if they have been created with separate
program statements—from the perspective of method A such object creation
statement would be a call of method B.

Second, a phantom field object from B can be mapped to multiple objects
in A. This is because it represents all the values that an instance variable could
have at the moment of the method call.

27

Lastly, in the case of a phantom field object the definition of MapsTo is
recursive. It is, however, guaranteed that the recursion will stop at some point
because the initiator of the first phantom field object created has to be a field
node owned by object o ∈ Vop ∪ Vos ∪ Vog.

Declaring a method

def foo; end

For each method a separate connection graph is created. The special
phantom object node self, representing an object being the method’s owner,
and special reference node return, pointing to a value returned from a method,
are added. Each method parameter is modelled with a phantom object node
representing the object passed to the method and a reference node pointing to
that object node—this way the parameters can be treated exactly like local
variables.

A special return node is linked with a node representing the value of any
explicit return statement as well as with a node representing the value of the
last statement in the method’s body.

The initial escape state of the self node, parameter object nodes and the
return node is set to arg escape. After the method’s body is fully translated,
escape analysis is performed as described before.

In Skarb all methods are translated on demand. The method declaration is
analysed and the connection graph is built only when the method is actually
called and not when the declaration is encountered.

Calling a method

foo(1,2,3)

Each method returns a value. To model it a special reference node is
created. Then the caller graph is updated based on the callee graph. The
nodes which can be affected by changes are nodes representing the object
passed as parameters to the method and the node representing the returned
value. The object being the callee owner is treated as an additional parameter
corresponding to the self phantom node. By A I will denote the caller method,
and by B the callee method.

For each pair (oa, ob), where oa ∈ V A
o is a node representing an actual

parameter and ob ∈ V B
op is a node representing a formal parameter, the update

procedure UpdateObjNode is performed. There could be multiple objects
which can be passed as an actual parameter oa. In that case multiple pairs
have to be generated. Then, for pair (ra, rb), where ra ∈ V A

re is the reference
node created to model the returned value and rb ∈ V B

re is the special return
node of B method connection graph, update procedure UpdateRefNode is
performed. After these two operations the caller graph is up to date.

28

Algorithm 3 UpdateObjNode procedure.
function UpdateObjNode(oa, ob)

if Escape(ob) = global escape then
Set escape state of ob to global escape.

end if
for all f ∈ V B

rf : ob → f ∈ EB
f do

Create node f ∈ V A
rf if necessary.

UpdateRefNode(f, f)
end for

end function

The pseudocode for UpdateObjNode is presented in algorithm block 3.
The procedure sets an escape state of the updated node to global escape if the
corresponding node state was set to such. Let us notice that only the global
escape state can be transferred from one method to another. The other escape
states depend only upon the placement of node in method’s connection graph.
After the escape state is updated, the procedure assures the existence of all
object fields and updates them.

Algorithm 4 UpdateRefNode procedure.
function UpdateRefNode(ra, rb)

if ¬(∃p∈V B
of

Initiatior(p) = rb ∧ p ∈ PointsTo(rb) then
Delete all outgoing edges of ra.

end if
for all o ∈ PointsTo(rb) do

for all m ∈ MapsTo(o) do
if m 6∈ PointsTo(ra) then

Create node m ∈ V A
o if necessary.

Add edge ra → m ∈ EA
r .

end if
UpdateObjNode(m, o)

end for
end for

end function

The pseudocode for UpdateRefNode is presented in algorithm block 4.
The first thing to do is to check whether the phantom object node representing
the initial value of the field is still pointed to by the field reference. The lack of
such an edge or the lack of a phantom node means that the previous value of
the field was overwritten—this is modelled by deleting all of the outgoing edges
of the reference node. Then it is necessary to update all of the objects pointed
to by the reference by taking into account the rules by which the objects from
one method map to objects from another method.

29

If the connection graph contains cycles, calling these procedures could lead
to an infinite recursion. To prevent this an additional mechanism is needed to
avoid processing the same pair of nodes twice. A simple solution is remembering
all of the pairs processed so far and breaking the recursion if the same pair is
encountered for the second time.

Recursive methods The recursive method is a method which at some point
calls itself. To correctly model such a method a special strategy is needed. First,
a connection graph is created for the method without evaluating recursive calls.
Then the method is analysed for the second time and a new connection graph
is built. When a recursive call is encountered the old connection graph is used
as the graph of the called method. Since the old connection graph captures
all of the non-recursive aspects of the method and in a correct program every
recursion has to be finite, this approach results in the correct model.

The same approach can be used with indirect recursion. Generally, during
the first pass calls to the methods present on the ‘call stack’ (or the static
equivalent of it used during translation) will not be modelled. During the
second pass incomplete connection graphs built during the first pass will be
used.

Unknown methods As Ruby is a dynamically typed language, it is not
always possible to determine which method should be called at compile time.
Sometimes there is a need to generate a dynamic method call which will perform
method search operations at run time. Such call should be represented in the
caller’s connection graph even though there is no connection graph of the callee.
Such a case should be modelled in a conservative way: all objects passed as
arguments should have a global escape state set, and the returned value should
also be a new object also with a global escape state set.

3.2 Stack allocation
After the escape analysis is performed, it is possible to allocate all local objects
on the stack instead of allocating them on the heap. This means changing
the allocation call in the generated code. The benefits of stack allocation
were described in the previous chapter. The practical implementation of this
mechanism in the Skarb compiler showed some of its limitations.

With stack allocation instruction allocating the memory must appear in
the same function in which that memory chunk will be used. Objects returned
from method calls obviously have to be allocated on the heap. This means that
it is impossible to use the factory method design pattern with stack allocation.
Furthermore, only a basic object structure can be allocated on the stack. If an
object needs additional memory and allocates it using its own internal methods,
that memory has to be allocated on the heap. This is usually the case with
collections and character strings of variable length.

30

Another problem is the risk of stack overflow caused by a large number of
stack-allocated objects. Without providing some countermeasures against this
problem, the stack allocation mechanism is not suitable for any practical use.
I have applied two complementary solutions: a limit of bytes allocated on a
single stack frame and a restriction on stack allocation inside a loop construct.

The limit concerning the stack frame works in fairly straightforward manner.
In each translated method there is an additional counter tracking the number
of bytes allocated on the stack at run time. After each allocation the counter
is increased accordingly. When the value of the counter reaches a defined limit,
all subsequent stack allocations are changed to heap allocations.

The drawback of the imposed limit is the necessity of checking and updating
the value of the counter. These additional operations could make execution of
the program significantly slower. To address this issue, I have decided to make
the pre-conditions for stack allocation more restrictive: an object created inside
a loop construct should never be allocated on the stack. This is based on the
assumption that most of nontrivial loops is long enough to exceed the allocated
bytes limit with objects created inside them. Whether this restriction leads to
performance improvement or not was the subject of experimental tests.

The mechanism for reusing memory allocated for local objects, which is
described in the next section, can also be seen as a form of countermeasure
against the stack overflow problem, although it has a broader use.

3.3 Local objects reuse

The program heap memory is managed by the garbage collector. When a mem-
ory chunk becomes unreachable it can be reclaimed and reused for allocations
of new objects. On the other hand, memory allocated on the stack frame is
reclaimed all at once when the function exits, even if some parts of this memory
became unreachable earlier. This can lead to a potential waste of memory and
can limit the number of objects allocated on the stack. I propose a method
based on the compile time garbage collection concept which allows to reuse
some of the unreachable memory before the function exits.

The general idea is to use the connection graph to find local objects un-
reachable at some point of the execution and to reuse their memory for the
newly created objects of the same type. Only local objects can be reused
in such a manner because it is impossible to determine the reachability of a
non-local object based on information from the connection graph. However,
as long as the object does not escape from the method, it is irrelevant from
the perspective of object reuse whether it is stack-allocated or heap-allocated.
This means that the described optimisation can be applied independently of
the stack allocation mechanism.

There are two kinds of expected benefits. First, when used in a conjunction
with stack allocation, this optimisation should increase the number of objects
allocated on the stack. Secondly, this way of obtaining memory for a created

31

object is much faster than heap allocation and even slightly faster than stack
allocation, so changing the normal allocation instructions to object reuse should
lead to an instant performance gain.

Additional information in a connection graph

To keep track of object reachability, information stored in the connection graph
has to be extended. First, it should be noticed that objects created inside
conditional blocks may or may not exist outside them—during static analysis
it is impossible to say if the block was executed or not. To represent this in a
connection graph the additional property of object nodes from Vos is introduced:
existence state.

The existence of a node can be either certain or conditional. The initial
existence state is always certain. When a connection graph of a conditional
block is merged with the previous connection graph, the object nodes which
exist only in the first graph have an existence state set to conditional. More
formally, suppose that there is a connection graph representing a situation
from before opening of the conditional block CG

′
= (V

′
, E

′
). Analogously, a

connection graph built in the conditional block is denoted by CG
′′
= (V

′′
, E

′′
).

After the merge, each object node o such that o ∈ V
′′ and o 6∈ V

′ has an
existence state set to conditional. Obviously, only the memory of objects whose
existence in a given block is certain can be reused.

Another aspect that is important from the perspective of reachability
analysis is the treatment of objects being arguments of evaluated expression.
Until the expression is evaluated, those objects stay reachable even if they are
not pointed to by any explicit references. To assure this along each connection
graph a special data structure is stored—the expression stack.

The expression stack consists of expression nodes belonging to Vre and
representing all evaluated expressions. Opening an expression results in pushing
a new node to the top of the stack, while closing an expression results in
removing the top node. For each node v ∈ V representing an argument of an
expression, there exists an edge e→ v ∈ E, where e ∈ Vre is a node representing
the expression. Removing an expression node from the stack leads to deleting
all of its outgoing edges. This way it is guaranteed that during the expression
evaluation all of its arguments are pointed to by at least one reference node.

Special attention has to be paid to the modelling assignments. It is important
that the Bypass operation on the reference node be performed after the
arguments of the right-hand expression are evaluated but before the evaluation
of the whole expression. This allows for a situation where an object being the
old value of the variable is reused to store the new value.

Finding objects for reuse

When a statement leading to object creation is encountered, the search for
currently unreachable objects is performed. I will denote a created object by o.

32

From the set of all unreachable objects those with a certain existence state and
type compatible with o are selected and stored alongside the o node. This set
comprises objects whose memory can be reused by o. Until the method is fully
translated the connection graph is incomplete, thus it is impossible to perform
escape analysis and a stored set may contain non-local objects. They will be
rejected later.

Definition 8. PotentialPrecursors(o) is a set of objects whose memory
can be potentially reused by o.

To find unreachable objects a simple mark-and-sweep algorithm is used.
The root set contains nodes representing local references, method parameters,
global variables and nodes from the expression stack. The connection graph is
traversed starting from the root set and all encountered objects are marked.
Unmarked objects are treated as unreachable.

Constructing succession lines

When a method is fully translated and its connection graph is completed, an
escape analysis is performed. At that point set of local objects can be obtained.
For each of these objects a PotentialPrecursors set exists. The remaining
problem is to decide in what manner the memory will be reused. I will define
it formally:

Definition 9. Succession line is a totally ordered set of local objects (o1, . . . , on)
such that:

∀i∈N,1≤i<n oi ∈ PotentialPrecursors(oi+1)

In a succession line only the memory for the first object is allocated normally,
the memory for all subsequent objects is reused. The goal of an algorithm
solving the memory reusage problem is to create the smallest number of
succession lines which will work as the partition of the local objects set.

My initial approach to this problem was the full search of a solution space
with the simple pruning of branches where the number of succession lines
exceeded the current minimum. The experiments quickly proved that such
a search is too slow for any practical use. Therefore, I decided to apply the
form of a greedy algorithm. It can be easily shown that it is not optimal,
nevertheless, in most cases it leads to a good enough solution.

Definition 10. PotentialSuccessors(o) is a set of local objects such that
for any local object p:

p ∈ PotentialSuccessors(o)⇔ o ∈ PotentialPrecursors(p)

The pseudocode for the greedy algorithm for the construction of succession
lines is presented in algorithm block 5. It attempts to always choose an object
with the highest number of potential successors to maximise the probability

33

Algorithm 5 Greedy algorithm for constructing succession lines.
O ← local objects
S ← new succession line
Find object o ∈ O with the biggest O ∩ PotentialSuccessors(o) set.
Add o to S.
Remove o from O.
while O 6= ∅ do

s← last object from S.
Find object o ∈ O ∩ PotentialSuccessors(s) with the biggest O ∩

PotentialSuccessors(o) set.
if no o found then

S ← new succession line
Find object o ∈ O with the biggest O ∩ PotentialSuccessors(o)

set.
end if
Add o to S.
Remove o from O.

end while

that the succession line will continue. If it is impossible to find the next object
for the succession line, a new line is started. The algorithm stops when all local
objects are distributed between succession lines.

34

Chapter 4

Tests results

To verify if the proposed optimisations are effective and if they introduce
expected performance gains, several tests were performed. The test cases
consisted of simple programs from an older version of the Computer Language
Benchmarks Game [10]:

• Ackermann—calculating value of the Ackermann function,
• Matrix—multiplication of large matrices containing floating-point num-

bers,
• Quicksort—sorting large arrays of floating-point numbers with Quicksort,
• Spectral norm—calculating the spectral norm of a large matrix of ones.
• Binary trees—allocating and deallocating a large number of binary trees.
• Binary trees (small)—identical to the previous test but with smaller tree

depth.

Different types of metrics were measured: execution time, percentage of
time spent on garbage collection and percentage of concrete objects in each
program that can be either stack-allocated or reused for later allocations.

The execution time of the same program in a modern operating system can
vary due to various factors (including garbage collection, which is not fully
deterministic). To collect more reliable results, each program was executed ten
times, the biggest and the smallest results were discarded and from the rest
mean execution time was calculated.

The fraction of time spent on garbage collection was measured using
gperftools [11] profiler. Each program was profiled five times in a row and a
mean value was calculated.

To measure the number of allocated objects a special version of Skarb
was prepared. Programs compiled with it keep two separate counters for
heap-allocated and stack-allocated objects. The counters are updated during
program execution and the values are printed when the program exits. In this
case, the number of allocated objects was constant for a program, so only one
run was needed to collect the exact values.

35

All test programs were compiled with math inline optimisation, which
ensures that compound arithmetical expressions are translated to standard
C operators instead of function calls. The C source code generated by Skarb
was compiled with a gcc 4.7 compiler with O3 level of optimization enabled.
Programs were executed on computer with AMD Phenom II X2 555 3.2 GHz
processor, the operating system was 64-bit version of Arch Linux.

Stack allocation in loop constructs

The goal of the first test was to verify if the restriction on stack allocation inside
the loop constructs is needed and if it performs better than just a standard
limit on bytes allocated on the single stack frame.

Skarb (SA) Skarb (SANL)
m s m s

Ackermann 0.350 0.004 0.351 0.002
Matrix 2.069 0.226 2.060 0.230
Quicksort 2.668 0.068 2.648 0.084
Spectral norm 0.870 0.041 1.074 0.037
Binary trees 12.500 0.274 12.473 0.112

Table 4.1: Execution time of programs with restriction on stack allocation
inside loops (SANL) and without such restriction (SA). m denotes mean time,
s is the standard deviation. All times are given in seconds.

The results are presented in Table 4.1. Column ‘Skarb (SA)’ contains
the execution times of programs with a standard bytes limit, column ‘Skarb
(SANL)’ contains the execution times of programs with a standard bytes limit
and a restriction on allocation inside the loops. As one can see, no significant
improvement is introduced by loop allocation restriction. In case of spectral
norm calculation it even slows down the program. It turns out that the
elimination of additional byte counter operations is not important for the whole
program execution. In consequence, in further tests only a standard byte limit
was used.

Percentage of optimised objects

Before measuring the execution time of individual test programs, it would be
interesting to know what level of performance gain could be expected in each
case. Such a prediction can be made based on the number of object which
were subject to optimisation. Two versions of each program were compiled:
with stack allocation optimisation and with object reuse optimisation. The
numbers of stack-allocated and heap-allocated objects were collected during a
single program run. The number of objects whose memory was reused can be

36

calculated as the difference between the total allocated objects number in the
two versions of the program.

SA% OR%

Ackermann 67% 0%
Matrix 0.00004% 1%
Quicksort 4% 30%
Spectral norm 0.0003% 0.0002%
Binary trees 20% 0%

Table 4.2: Percentage of total concrete objects than can be stack-allocated
(SA) or reused (OR).

The results are presented in Table 4.2 as the percentage of all created objects.
In the case of the recursive Ackermann function more than half of all objects
can be allocated on the stack, which should result in substantial performance
gain. In the binary trees test 20% of the objects can be stack-allocated, so
a noticeable speedup is also expected. The same goes for quicksort, where
performance gain is expected due to high percentage of reused objects. Based
on this data, no speedup should be expected in the matrix multiplication and
spectral norm tests.

The high percentage of objects that can be stack-allocated in the Ackermann
and binary trees test programs stems from their recursive character and lack
of loops. Furthermore, in the Ackermann function no arrays or other data
structures are used, so there are no objects with internal heap-allocated data.
Because of these reasons performance gain is expected to be most evident in
the Ackermann test program.

Percentage of time spent on garbage collection

It is possible to do tests similar to those described in Chapter I to check how
much of the program execution time is spent on garbage collection in optimised
and non-optimised programs. Successful optimisation should reduce this value.

The values collected using the gperftools profiler are presented in Table 4.3.
As expected, garbage collection overhead in the optimized Ackermann program
is much lower than in the non-optimised version. There are no expected
differences between the different versions of the binary trees program and the
difference in the case of quicksort is rather small.

The results of the spectral norm and matrix multiplication tests are surpris-
ing. Intuitively, based on the fraction of objects affected by optimisations, no
difference in garbage collection times was expected. However, a small reduction
is seen in the spectral norm test and a small gain in the matrix multiplication.
This can be explained by complex garbage collector strategies and different
object access time depending on their placement in the memory. This way

37

Skarb Skarb (SA) Skarb (OR) Skarb (SA + OR)

Ackermann 55.3% 33.7% 60.4% 22.7%
Matrix 31.5% 34.3% 39.9% 39.5%
Quicksort 55.4% 54.8% 51.8% 49.4%
Spectral norm 45.2% 41.0% 39.8% 41.2%
Binary trees 56.4% 55.1% 54.6% 55.1%

Table 4.3: Percentage of execution time spent on heap memory management in
programs compiled with different optimisations: SA—stack allocation, OR—
object reuse, SA+OR—both.

even a few objects allocated on the stack or not allocated at all can change
the moment when a garbage collection cycle occurs. Similarly, moving objects
in the memory can change the time of execution of code, thus leading to an
increase in the portion of time spent on memory management.

Performance gains

In the final experiment the mean times of execution of all the test programs
were collected. Because the previous tests showed that in every case the fraction
of time spent on garbage collection changes, the performance gain or reduction
can be expected in any program.

Skarb Skarb (SA) Skarb (OR) Skarb (SA+OR)
m s m s m s m s

Ackermann 0.566 0.009 0.350 0.004 0.563 0.010 0.359 0.011
Matrix 2.067 0.225 2.069 0.226 1.775 0.193 1.783 0.184
Quicksort 2.566 0.078 2.668 0.068 2.278 0.064 2.330 0.071
Spectral norm 0.958 0.022 0.870 0.041 0.884 0.031 0.857 0.086
Binary trees 13.044 0.132 12.500 0.274 13.117 0.200 12.390 0.314
Binary trees (small) 2.738 0.014 2.573 0.023 2.719 0.020 2.567 0.018

Table 4.4: Execution time of programs compiled with different optimisations:
SA—stack allocation, OR—object reuse, SA+OR—both. m denotes the mean
time, s denotes the standard deviation. All times are given in seconds.

The results where gathered in Table 4.4. To make the gains introduced
by each optimisation more visible, the execution times of optimised programs
relative to the non-optimised ones were presented in Table 4.5.

As one can see, stack allocation optimisation introduces a huge gain in the
case of Ackermann function and only a minor gain in the case of binary trees.
This holds for both versions of binary trees tests with different tree depth level,
so this behaviour seems independent of the amount of memory used or of the

38

Skarb (SA) Skarb (OR) Skarb (SA+OR)

Ackermann 0.62 0.99 0.63
Matrix 1.00 0.86 0.86
Quicksort 1.04 0.88 0.91
Spectral norm 0.91 0.92 0.89
Binary trees 0.96 1.01 0.95
Binary trees (small) 0.94 0.99 0.94

Table 4.5: Execution time relative to a non-optimised program.

total execution time. A 10% speedup in the spectral norm test can be explained
with a small change in the conditions, which delays the garbage collector cycle.

Surprisingly, object reuse optimisation proved to be the most effective in
the matrix multiplication test introducing 15% gain. Since it reduces the
execution time of the program while at the same time increasing the fraction
of time spent on memory management, the speedup has to be connected with
execution of a non-garbage collector code. Perhaps this can be explained with
different objects placement in the memory or some optimizations made by
gcc. In the spectral norm test a 10% speedup was observed, just as with the
stack allocation optimisation. These gains, however, were not cumulative. A
10% gain quicksort test was expected based on the results of the previous
experiments.

39

Chapter 5

Conclusions

In this thesis memory management mechanisms used in official implementations
of popular script languages were identified and analysed. In the case of Perl this
was reference counting, in the case of Python this was the hybrid mechanism
using reference counting and a garbage collector and in the case of Ruby this
was the standard garbage collector. Tests showed that memory management
accounts for a large part of the execution time of programs written in these
languages. One of the reasons for this situation is the fact that in the analysed
languages there is no distinction between scalar values and compound objects.
Even simple numerical values are often heap-allocated. This makes all kinds
of memory management optimisations particularly useful in script language
interpreters.

Two forms of optimisations were implemented for Skarb—experimental
Ruby compiler: stack allocation and local object reuse. Both relied on static
code analysis performed with the use of connection graph abstraction. This
abstraction proved to be a convenient way of tracking the escape state of
objects across the methods and it could be easily extended to keep additional
information.

The applications of stack allocation were limited because of the requirement
to allocate the memory on the topmost stack frame. This is this technique’s
natural restriction but makes it inflexible in practical use. Stack allocation
was not used with objects collections because it would require modification of
external libraries. I conclude that implementing stack allocation in the case of
object oriented languages with code encapsulation features is quite inconvenient
and not fully effective. More flexible mechanisms should be researched.

The experimental tests showed that the applicability of stack allocation
and object reuse vary greatly between the programs. In the best cases 67%
of the objects could be stack-allocated and 30% could be reused. However,
even a small number of objects not allocated on the heap can improve program
performance by improving the memory locality and affecting garbage collector
cycles. The biggest speedup of program execution was 38% in the case of stack
allocation and 14% in the case of object reuse.

The collected results are not representative of the whole range of programs

40

written in script languages. However, they clearly show that the proposed
optimisations are of practical use and can introduce noticeable performance
gains. Research on memory management strategies and optimisations has
traditionally been performed for languages like Lisp, Prolog, Smalltalk and,
more recently, for Java and C#. It is now time to move this research to the
field of script languages—languages which would greatly benefit from this type
of research.

Possible further research

The presence of unknown methods reduces the precision of escape analysis and
consequently reduces the applicability of optimisations based on the connection
graph. This means that the effectiveness of the described optimisations may
be limited by the effectiveness of the type inference system, so improving the
latter would also improve the former. In fact, since a connection graph allows
to track program objects and to annotate them with any properties, it would
be possible to build a type inference system relying on a connection graph
itself. This would lead to a more precise analysis than the approach employed
currentyl in Skarb. With some additional rules the types of objects contained
in collections, such as arrays, could also be determined.

Replacing the stack allocation with a more flexible allocation strategy based
on memory regions is a logical course of action. This would allow to maintain
the benefits of fast allocation and deallocation and to extend them to a wider
group of objects (e.g., objects returned from the factory methods).

Finding a better algorithm for building succession lines would improve the
applicability of object reuse. Switching from tracking object reachability to
tracking the moment of its last usage would allow to determine its lifetime
more precisely. Strategies for reusing objects across methods could also be
researched and developed.

Finally, it would be valuable to collect more experimental data. Testing
implemented optimisations along different garbage collectors would allow to
better assess their versatility. Checking their impact on the program’s memory
consumption would also be interesting.

41

Bibliography

[1] Emery D. Berger. Reconsidering custom memory allocation. In In Pro-
ceedings of the Conference on Object-Oriented Programming: Systems,
Languages, and Applications (OOPSLA) 2002, pages 1–12. ACM Press,
2002.

[2] Bruno Blanchet. Escape analysis for Java: Theory and practice. ACM
Trans. Program. Lang. Syst., 25(6):713–775, November 2003.

[3] Hans J. Boehm, Alan Demers, and Mark Weiser. Boehm-Demers-Weiser
garbage collector [online]. URL: http://www.hpl.hp.com/personal/
Hans_Boehm/gc/ [cited 5.05.2012].

[4] Dov Bulka and David Mayhew. Efficient C++: performance programming
techniques. Addison-Wesley, Boston, MA, USA, 2000.

[5] Craig Chambers. Cost of garbage collection in the SELF system. In
OOPSLA’91 GC Workshop, 1991.

[6] Jong deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C, and
Samuel P. Midkiff. Stack allocation and synchronization optimizations for
Java using escape analysis. ACM Transactions on Programming Languages
and Systems, 25:2003, 2003.

[7] David Detlefs, Al Dosser, and Benjamin Zorn. Memory allocation costs in
large C and C++ programs. Software—Practice & Experience, 24(6):527–
542, 1994.

[8] Amer Diwan, David Tarditi, and Eliot Moss. Memory system perfor-
mance of programs with intensive heap allocation. ACM Transactions on
Computer Systems, 13:244–273, 1995.

[9] Python Software Foundation. Python official website [online]. URL:
http://www.python.org [cited 11.05.2012].

[10] Brent Fulgham. Computer language benchmarks game [online]. URL:
http://shootout.alioth.debian.org/ [cited 07.05.2012].

[11] Google. gperftools [online]. URL: http://code.google.com/p/
gperftools/ [cited 5.05.2012].

42

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.python.org
http://shootout.alioth.debian.org/
http://code.google.com/p/gperftools/
http://code.google.com/p/gperftools/

[12] Aman Gupta. perftools.rb [online]. URL: https://github.com/tmm1/
perftools.rb [cited 5.05.2012].

[13] Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi. Analysis of functional
programs to detect run-time garbage cells. ACM Trans. Program. Lang.
Syst., 10(4):555–578, 1988.

[14] Gerda Janssens, Maurice Bruynooghe, Nancy Mazur, and Peter Ross.
Practical aspects for a working compile time garbage collection system for
Mercury, 2001.

[15] Richard E. Jones and Rafael Dueire Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John Wiley, 1996.

[16] Wen ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng Gao, and
Weihaw Chuang. Profile-guided proactive garbage collection for local-
ity optimization. In In Proceedings of ACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages 332–340, 2006.

[17] Jeffrey Kegler. Perl is undecidable. The Perl Review, 5(0):7–11, 2008.

[18] Feliks Kluzniak. Compile time garbage collection for ground Prolog. In
ICLP/SLP, pages 1490–1505, 1988.

[19] Thomas Kotzmann and Hanspeter Mössenböck. Escape analysis in the
context of dynamic compilation and deoptimization. In Proceedings of the
1st ACM/USENIX international conference on Virtual execution environ-
ments, VEE ’05, pages 111–120, New York, NY, USA, 2005. ACM.

[20] Doug Lea. A memory allocator [online]. URL: http://gee.cs.oswego.
edu/dl/html/malloc.html [cited 5.05.2012].

[21] Henry Lieberman, Carl Hewitt, and Danny Hillis. A real-time garbage
collector based on the lifetimes of objects. Communications of the ACM,
26:419–429, 1983.

[22] Nancy Mazur. Compile-time garbage collection for the declarative language
Mercury. PhD thesis, Department of Computer Science, K.U.Leuven,
Leuven, Belgium, May 2004.

[23] Markus Mohnen. Efficient compile-time garbage collection for arbitrary
data structures. In In Symposium on Programming Language Implementa-
tion and Logic Programming (PLILP’95), pages 241–258. Springer, 1995.

[24] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. SIG-
PLAN Not., 27(7):116–127, July 1992.

[25] Perl.org. Perl official website [online]. URL: http://www.perl.org [cited
11.05.2012].

43

https://github.com/tmm1/perftools.rb
https://github.com/tmm1/perftools.rb
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://www.perl.org

[26] Carl Mcconnell Ralph and Ralph E. Johnson. Compile-time garbage
collection in typed Smalltalk.

[27] Vimal K. Reddy, Richard K. Sawyer, and Edward F. Gehringer. Caching
strategies for improving generational garbage collection in smalltalk. Tech-
nical report, North Carolina State University, 2003.

[28] Patrick Sansom and Simon L. Peyton Jones. Generational garbage collec-
tion for haskell. In In Functional Programming Languages and Computer
Architecture, pages 106–116. ACM Press, 1993.

[29] Guy L. Steele, Jr. Multiprocessing compactifying garbage collection.
Communications of the ACM, 18(9):495–508, 1975.

[30] Jan Stępień and Julian Zubek. Translation of ruby source code to a
language compilable to machine code. Bachelor thesis, Faculty of Mathe-
matics and Information Science, Warsaw University of Technology, Warsaw,
Poland, 2011.

[31] Ruby Visual Identity Team. Ruby official website [online]. URL: http:
//www.ruby-lang.org [cited 11.05.2012].

[32] David Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. SIGPLAN Notices, 19(5):157–167, 1984.

[33] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In Proceedings
of the International Workshop on Memory Management, pages 1–116.
Springer-Verlag, 1995.

44

http://www.ruby-lang.org
http://www.ruby-lang.org

Warszawa, dnia

Oświadczenie

Oświadczam, że pracę magisterską pod tytułem „Zastosowanie optyma-
lizacji pamięci w interpreterach języków skryptowych”, której promotorem
jest dr inż. Krzysztof Kaczmarski, wykonałem samodzielnie, co poświadczam
własnoręcznym podpisem.

45

	Contents
	Introduction
	Script languages and memory management
	Script languages
	Memory management
	Cost of memory management

	Memory management optimisations
	Stack allocation
	Compile time garbage collection

	Optimisations implemented in the Skarb compiler
	Connection graph abstraction
	Stack allocation
	Local objects reuse

	Tests results
	Conclusions
	Bibliography

